
International Journal of Computer Trends and Technology Volume 72 Issue 11, 39-62, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P106 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Investigating the Relationship between Fuel

Consumption and Fuel Properties: A Regression Analysis

Asish Pradhan

Technical Architect at Dell Technologies, USA.

Corresponding Author : Asish_Pradhan@Dell.com

Received: 21 September 2024 Revised: 24 October 2024 Accepted: 13 November 2024 Published: 30 November 2024

Abstract - This study investigates the relationship between fuel consumption and fuel properties, including vehicle type, cetane

number, density, viscosity, initial boiling point, final boiling point, and flash point. A linear regression analysis was conducted

to identify the most significant predictors of fuel consumption. The results show that vehicle type, cetane number, and initial

boiling point are the most significant predictors of fuel consumption. The study also found that the interaction between vehicle

type and initial boiling point significantly impacts fuel consumption. This study's findings can inform the development of more

efficient and environmentally friendly vehicles.

Keywords - Fuel consumption, Exploratory data analysis, Cross Validation, Linear regression, Multivariate Analysis,

Regression Analysis.

1. Introduction
The transportation sector significantly contributes to

greenhouse gas emissions, with heavy-duty vehicles being a

major source of emissions. With the advancement of

civilization and the rise in population, there is a heavy set of

vehicles that cause pollution. This pollution does have an

impact on humans, birds, and other living beings. To ensure

safety and sustenance, this study tries to identify the specific

fuel properties that impact fuel consumption and minimizing

it. Most research focuses on reducing emissions. However,

based on the understanding of the data, it is noticed that the

impact of fuel properties, such as cetane number, density,

viscosity, boiling point, flash point, aromatics, etc., on engine

efficiency, thereby affecting fuel consumption. This study

uses the fuel consumption dataset to investigate the

relationship between fuel consumption and fuel properties in

heavy-duty vehicles [1]. The results will provide insights into

the impact of fuel properties on fuel consumption and provide

strategies to reduce fuel consumption and emissions in this

sector. Various methodologies investigated the relationship

between fuel consumption and fuel properties. The model

specification was based on a comprehensive analysis of all

attributes, including cetane number, density, viscosity, engine

type, load capacity, driving conditions, and fuel properties.

The model was estimated using Ordinary Least Squares (OLS)

regression, and the results were checked for adequacy using

plots and diagnostics. Model transformations were applied to

address potential issues with normality and homoscedasticity,

including square root and log transformations. The

introduction of quadratic terms was also considered to account

for potential non-linear relationships. The best regressors were

selected using all possible regressions and stepwise

regression, and the variance influencing factor (VIF) was

checked to identify potential multicollinearity issues. The

model was validated using multiple techniques, including

redoing regressions with new possible models and analyzing

the results. Based on the results obtained, the best model has

been selected. For this selected model, adequacy and

validations were verified using plots and diagnostics. The

main goal of this study is to investigate the relationship

between fuel consumption and fuel properties and identify the

primary factor that influences fuel consumption. This will help

the environment be pollution-free, aid manufacturers in

developing better vehicles that reduce fuel consumption and

inform strategies to reduce fuel consumption and emissions.

By employing a range of methodologies, including model

specification, parameter estimation, model adequacy

checking, model transformation, and model validation, this

study aims to provide a comprehensive understanding of the

relationship between fuel consumption and fuel properties in

heavy-duty vehicles.

2. Exploratory Data Analysis (EDA)
2.1. Dataset

The dataset used for this analysis is a collection of several

observations of fuel consumption and related attributes for

heavy-duty vehicles. This data was obtained from a research

study on polycyclic aromatic hydrocarbons (PAHs) emissions

from heavy-duty diesel vehicles [1]. In this prior research

document, 47 variables, fuel parameters, and PAH contents

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Asish_Pradhan@Dell.com

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

40

were analyzed, which resulted in a data matrix of 376

observations. With the application of Principal Component

Analysis (PCA), it was found that the fuel aromatic contents

and initial and final distillation boiling points affect fuel PAH

contents. However, at this point, there is little to no mention

of other fuel properties affecting fuel PAH. Therefore, a

subset of fuel attributes present in the given dataset is used for

this study [6]

Table. 1 Variables & their description

Attribute Description

𝑦 Fuel consumption (in g/km)

𝑥1
Vehicle type

 (binary: 0 = bus, 1 = truck)

𝑥2 Cetane number

𝑥3 Density (g/L, 15 °C)

𝑥4 Viscosity (KV, 40 °C)

𝑥5 Initial boiling point (degrees C)

𝑥6 Final boiling point (degrees C)

𝑥7 Flash point (degrees C)

𝑥8 Total aromatics (percent)

2.2. Descriptive Analysis

2.2.1. Target Variable: Fuel consumption (y)

Based on this EDA, fuel consumption is a continuous

variable with a slightly skewed distribution. Most data points

are concentrated around the mean, with a few outliers at the

higher end of the range. There is a moderate positive

correlation between fuel consumption and cetane number and

viscosity and a moderate negative correlation with density and

flash point.

Fig. 1 Distribution of target variable fuel consumption

2.2.2. Vehicle Type Vs Fuel consumption

The vehicle type variable (𝑥1), is categorical, either 0 or

1. 0 represents a bus, and 1 represents a truck. In the current

dataset, both have equal numbers of observations. The

correlation coefficient with the target variable y is -0.2345,

which shows a weak relationship between them.

2.2.3. Cetane Number Vs Fuel consumption

The variable x2, the Cetane number, has a slightly skewed

distribution with a mean of 49.812 and a median of 49.15,

indicating a minor skew in data. The correlation coefficient

with y is -0.07, representing almost no relationship with the

target variable.

2.2.4. Density Vs Fuel consumption

The variable x3, density, has a slightly skewed

distribution with a mean of 820.412 and a median of 817.25.

The correlation coefficient with y is 0.162. It appears to be a

little dependency on the target variable y.

2.2.5. Viscosity Vs Fuel consumption

The variable x4, viscosity, has a slightly skewed

distribution with a mean of 1.98, a median of 2.10, and 75%

of data have values more than 2.14. The correlation coefficient

with y is -0.04, showing a negligible relationship with y.

2.2.6. Initial Boiling Point Vs Fuel consumption

The variable x5, Initial boiling point, has a bit of skewed

distribution with a mean of 195.62 and a median of 185. The

correlation coefficient with y is -0.591. This implies a strong

reverse relationship between x5 and y.

2.2.7. Final Boiling Point Vs Fuel consumption

The variable x6, the final boiling point, has a slightly left-

skewed distribution with a mean of 296.12 and a median of

299. Mean value is slightly less than the median, so the data is

left skewed. The correlation coefficient with y is 0.588. This

suggests that variable x6 has a strong positive relationship

with target variable y.

2.2.8. Flash Point Vs Fuel consumption

The variable x7, Flash point, has a slightly skewed

distribution with a mean of 76.87 and a median of 75. The

correlation coefficient with y is 0.507 showing a positive

relationship with y.

2.2.9. Total Aromatics Vs Fuel consumption

The variable x8, Total aromatics, has a left-skewed

distribution with a mean of 18.8 and a median of 20.25. The

correlation coefficient with y is 0.505, which shows a strong

positive relationship with variable y.

2.2.10. Vehicle Type Vs Initial Boiling Point

Vehicle type and initial boiling point x5 seem evenly

distributed, with a few missing data in between. At this point,

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

41

it’s hard to guess how the initial boiling point and the vehicle

types are related unless more domain knowledge is gathered

the correlation analysis revealed a strong positive relationship

between density and viscosity, with a coefficient of 0.82,

indicating that as one increases, the other tends to increase.

Furthermore, moderate positive correlations were found

between total aromatics and density and between total

aromatics and final boiling point, suggesting that these

variables are related and may be used to predict each other.

Additionally, the negative correlation between the initial and

final boiling points implies that as the initial boiling point

increases, the final boiling point tends to decrease, which may

be due to the chemical composition of the substance or the

manufacturing process used. Overall, these correlations

provide valuable insights into the relationships between these

variables and can be used to improve the understanding of the

underlying physical and chemical properties of the substances

being studied.

Fig. 2 Distribution of initial boiling point for both vehicle types

Fig. 3 Correlation matrix

3. Methodology
The goal is to build a predictive model that accurately

predicts fuel consumption based on the given dataset. To

achieve this, a model-building pipeline is built that iteratively

adds and refines the regressors to achieve the best possible

model.

3.1. K-Fold Cross Validation

The cross-validation technique measures the model

against unseen data while dealing with a defined dataset. This

helps avoid overfitting and gives an insight into behaving

against unseen datasets. In general, 20% of data is set aside for

final model validation, and the remaining 80% of data is set to

undergo cross-validation. In a K-fold cross-validation method,

one-fold is set aside for validation, and the remaining K-1 fold

of data is used for training. Stratification (binning in

regression) ensures data in each fold is evenly distributed. In

each iteration, the sum model is tested. The overall model’s

performance is found by taking the average of the metrics,

such as 𝑅2and MSE. [8]

3.2. Multiple Linear Regression

Multiple linear regression is a statistical technique used to

analyze the relationship between a dependent variable 𝑦 and

two or more independent variables 𝑥1, 𝑥2, … , 𝑥𝑛.The goal is to

predict the value of 𝑦 based on the values of the independent

variables.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖 (1)

Where:

• 𝑦 is the dependent variable

• 𝑥1, 𝑥2, … , 𝑥𝑛 are the independent variables

• 𝛽0 is the intercept or constant term

• 𝛽0, 𝛽1 … 𝛽𝑛 are the slope coefficients

• 𝜖 is the error term

3.3. Interpretation of the Above Multiple Linear Regression

Equation

The slope coefficients (𝛽) represent the change in the

dependent variable for a one-unit change in the independent

variable while holding all other independent variables

constant. The intercept (𝛽0) represents the value of the

dependent variable when all independent variables are equal

to zero. The R-squared value represents the proportion of the

variance in the dependent variable explained by the

independent variables.

3.4. Assumptions in Multiple Linear Regression

• Linearity: The relationship between the dependent

variable and independent variables should be linear.

• Independence: Each observation should be independent

of the others.

• Homoscedasticity: The variance of the residuals should

be constant across all levels of the independent

variables.

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

42

• Normality: The residuals should be normally distributed.

• No multicollinearity: The independent variables should

not be highly correlated. [2,12]

3.5. Advantages & Disadvantages of Multiple Linear

Regression

Multiple linear regression is a powerful tool for analyzing

the relationship between multiple variables, identifying the

relative importance of each variable and creating a linear

equation that predicts the dependent variable. However, it

requires a large sample size. It can be sensitive to outliers,

making it essential to carefully evaluate the model and ensure

that the data is representative of the population. Additionally,

the model can be difficult to interpret, especially when

multiple independent variables exist.

3.6. Define Base Model (with all variables)

This step involves taking all variables in the dataset for

regression. Specify the dependent variable (𝑦) and

independent variables (𝑥1, 𝑥2, . . . , 𝑥𝑛).

𝑦 = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) (2)

3.7. Parameter Estimation

Estimate the coefficients of the linear equation using a

suitable estimation method. This research uses Ordinary Least

Square Regression (OLS), a simple and common technique for

parameter estimation. OLS regression is well suited as it

adheres to the required assumptions in linear regression (3.3).

This is also an unbiased and consistent estimator, as the

estimator’s expected value is the same as the true value of the

parameter, and it tends to converge as the data size increases.

This research is based on a limited dataset; therefore, OLS

regression would be better suited to this case. When a larger

dataset is available, the non-linearity analysis may be studied

as part of future work. 𝛽0, 𝛽1, . . . , 𝛽𝑛 = (𝑋′𝑋)−1𝑋′𝑦 . This

step involves using statistical techniques to estimate the

coefficients of the linear equation. These coefficients signify

the relationship between the independent variable(s) and the

dependent variable.

• 𝑋′𝑋 : the covariance matrix of the independent
variables.

• (𝑋′𝑋)−1 : the inverse of the covariance matrix of the
independent variables.

• 𝑋′𝑦 : the vector of observations of the dependent variable.

3.8. Model Adequacy Checking

This step involves checking whether the residuals are
normally distributed, an assumption of many statistical
tests.

𝑊 = 𝛴(𝜀𝑖 − 𝜀)2 (3)

𝑊 ~ 𝑁(0, 𝜎2) (4)

𝑊 is the sum of squares of the residuals. The residuals are

normally distributed with mean 0 and variance 𝜎2.

3.8. Model Transformation

This step involves transforming the independent variables

to meet the assumptions of multiple linear regression. Square

root transformation was applied to the dependent variable (y)

to meet the normality assumption, and then log transformation

was applied to the same dependent variable(y).

√(𝑦) = 𝛽0 + 𝛽1𝑥1 + 𝛽𝑛𝑥2 + … + 𝛽𝑛𝑥𝑛 + 𝜀 (5)

𝑙𝑜𝑔(𝑦) = 𝛽0 + 𝛽1𝑥1 + 𝛽𝑛𝑥2 + … + 𝛽𝑛𝑥𝑛 + 𝜀 (6)

3.9. Non-Linear Relationship Verification

As none of the above transformations didn’t help in

improving the model, it is essential to check for non-linearity

in the relationships between the dependent variable and the

predictor variables. F-test and t-test statistics are generally

used to determine if the relationships are linear or non-linear.

To test this, quadratic terms are introduced, and this process is

also impractical to verify each quadratic term with a smaller

dataset since that doesn’t have much information to extract

through relationship plots. There are a few other advanced

techniques that can be leveraged to analyze the non-linearity

as a future scope.

3.10. Variable Selection – All Possible Regressions

In the above-described methods, all variables are used to

verify if a better model was obtained or not. It's necessary to

evaluate several combinations of the variables and select the

subset of variables that best predicts the outcome variable. As

part of all possible regression methods, all possible

combinations of predictor variables are considered to find the

best fit. Equations that include one, two, three, and so on of

the predictor variables are examined, and the best model is

found based on an evaluation criterion. This is a challenging

and time-consuming task because if there are K predictor

variables, there are 2𝐾 possible equations to consider. It's

impractical to analyze all of them, so the following analysis

plots are used to help.

3.10.1. Coefficient of Multiple Determination(𝑅𝑝
2)

In general, a better 𝑅2 value decides the goodness of a

model; however, it is also necessary to access the 𝑅2 value

when a regressor is added or removed from a model equation

and make a judgment of whether to consider the regressor or

not. Adj 𝑅2 could also be helpful in this purpose of taking or

leaving the regressor. The 𝑅2 value for up to p regressors, i.e.

𝑅𝑝
2 is calculated as

 𝑅𝑝
2 =

𝑆𝑆𝑅(𝑝)

𝑆𝑆𝑟
= 1 − (

𝑆𝑆𝑅𝑒𝑠(𝑝)

𝑆𝑆𝑇
) (7)

Where 𝑆𝑆𝑅(𝑝) is the regression sum of squares and

𝑆𝑆𝑅𝑒𝑠(𝑝) denotes the residual sum of squares for a subset

model having 𝑝 terms. Note that 𝑅𝑝
2 value is calculated for

each value of 𝑝, one for each possible subset model of size 𝑝 .

As 𝑝 increases, the 𝑅𝑝
2 value also increases and reaches its

maximum when 𝑝 = 𝐾 + 1. Therefore, adding up regressors

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

43

is beneficial until adding additional variables is not useful

anymore by just providing a small increase in 𝑅𝑝
2.

Fig. 3 𝑹𝒑

𝟐 Vs 𝒑 plot

3.10.2. Residual Mean Square 𝑀𝑆𝑅𝑒𝑠(𝑝)

𝑀𝑆𝑅𝑒𝑠(𝑝) is the reverse of above 𝑅𝑝
2 criterion. Model

equations are aimed to achieve the lowe𝑟 𝑀𝑆𝑅𝑒𝑠 value. A

better model has the comparatively lowest 𝑀𝑆𝑅𝑒𝑠(𝑝) value. In

this criterion, the change in 𝑀𝑆𝑅𝑒𝑠(𝑝) is accessed while adding

or deleting a regressor, and then a judgmental discussion is

taken on whether to include or exclude the regressor.

𝑀𝑆𝑅𝑒𝑠(𝑝) =
𝑆𝑆𝑅𝑒𝑠(𝑝)

𝑛−𝑝
 (8)

 As the value of p increases, the sum of squares of

residuals 𝑆𝑆𝑅𝑒𝑠(𝑝) decreases. The 𝑀𝑆𝑅𝑒𝑠(𝑝) value decreases in

the beginning, then stabilizes, and may increase eventually. In

the process of adding regressors from a model equation, when

the reduction in 𝑆𝑆𝑅𝑒𝑠(𝑝)is not sufficient to compensate for the

loss of one degree of freedom in the denominator, the

𝑀𝑆𝑅𝑒𝑠(𝑝) begins the upward movement.

Fig. 4 𝑴𝑺𝑹𝒆𝒔(𝒑) Vs 𝒑 plot

In summary in a 𝑀𝑆𝑅𝑒𝑠(𝑝) Vs 𝑝 plot below points is

looked at in order to select the best set of regressors.

• Point where 𝑀𝑆𝑅𝑒𝑠(𝑝) holds the minimum value

• The value of 𝑝 such that 𝑀𝑆𝑅𝑒𝑠(𝑝)) is approximately

equal to 𝑀𝑆𝑅𝑒𝑠 for the full model

• A value of 𝑝 near the point where the smallest 𝑀𝑆𝑅𝑒𝑠(𝑝)

moves upward

3.10.3. Mallows’ s 𝐶𝑝 Statistic 𝐶𝑝

In the 𝐶𝑝 criterion, a plot of 𝐶𝑝 as a function of 𝑝 can be

helpful to visualize it better. Regression equations with slight

bias will have values of 𝐶𝑝 that fall near the line 𝐶𝑝 =
𝑝 (point A in the figure below), while those equations with

substantial bias will fall above this line. Generally, models

with small values of 𝐶𝑝 and those lying below the 𝐶𝑝 = 𝑝

line represent better models.

Fig. 5 𝐂𝐩 Vs 𝒑 plot

3.11. Variable Selection – Forward Selection

Forward selection is a method for selecting the most

important predictor variables in regression analysis. It starts

with an empty model and adds one predictor variable at a time,

selecting the one with the highest correlation coefficient with

the response variable. The process continues until a stopping

criterion is reached. The advantages of forward selection

include ease of implementation and flexibility in choosing the

evaluation criterion.

𝐹 =
𝑆𝑆𝑅(𝑥2|𝑥1)

𝑀𝑆𝑅𝑒𝑠(𝑥1,𝑥2)
 (9)

In general, at each step, the regressor having the highest

partial correlation with y (or equivalently, the largest partial 𝐹

statistic given the other regressors already in the model) is

added to the model if its partial 𝐹 statistic exceeds the

preselected entry-level. 𝐹𝐼𝑁. It continues until a stopping

criterion is reached, such as all or a specified number of

predictor variables or 𝐹 statistic value doesn’t exceed 𝐹𝐼𝑁.

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

44

3.12. Variable Selection – Backward Elimination

Backward elimination is a method for selecting the most

important predictor variables in regression analysis by

iteratively removing the least important ones. It starts with a

full model and removes regressors one by one based on their

partial F-statistic, stopping when a stopping criterion is

reached. Backward elimination has advantages, such as

handling correlated predictor variables and detecting

interactions, but it can be computationally intensive. It's a

useful alternative to forward selection and can be combined

with other methods like stepwise regression and Lasso

regression.

3.13. Variable Selection – Stepwise Regression

Stepwise regression is a method that combines forward

and backward elimination to select the most important

predictor variables in regression analysis. It iteratively adds or

removes variables based on their partial F-statistic, stopping

when a criterion is reached. Advantages include flexibility,

handling of correlated variables, and detection of interactions.

However, limitations include sensitivity to variable order and

the potential for overfitting.

4. Results and Discussion
The analysis started with a base model by taking all the

regressors. The model equation, therefore, was 𝑦 = 𝐶(𝑥1) +
 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 (C refers to a

categorical variable) Upon running the regression, it is

observed that all the 𝑝-values are more than the significance

level = 0.05 .

Therefore, none of the regressors are statistically

significant, and about 50% of the data are away from the 45-

degree line in the QQ plot.[5] As part of the square root

transformation, all of the y data are now replaced with their

corresponding square roots, and the regression process

continues.

Fig. 6 OLS regression results for the base model

Fig. 7 Residual plot of base model

Fig. 8 OLS regression results with sqrt(y)

Fig. 9 Residual plot of the model with sqrt(y)

Results with log transformation on target variable y

below.

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

45

Fig. 10 OLS regression results with log(y)

Fig. 11 Residual plot of the model with log(y)

4.1. Best Regressor Selection

4.1.1. All Possible Regressions

Examining the above plot of 𝑅𝑝
2 versus 𝑝, after three

regressor sets [𝑥1, 𝑥3, 𝑥5] in the model, there is little or nothing

much to be gained in terms of 𝑅𝑝
2 by introducing additional

variables. Therefore, 𝑥1, 𝑥3, 𝑥5 are selected as the regressors.

The minimum residual mean square model is the model, with

𝑝 = 4 with 𝑀𝑆𝑅𝑒𝑠(4) = 56.5183. In the 𝑀𝑆𝑅𝑒𝑠(𝑝) Vs 𝑝

plot, the model that minimizes 𝑀𝑆𝑅𝑒𝑠(𝑝) also maximizes the

adjusted 𝑅2. There are few other regressors with comparable

𝑀𝑆𝑅𝑒𝑠(𝑝) value. However, 𝑥1, 𝑥3 and 𝑥5 are selected as the

regressors as this set has the lowest 𝑀𝑆𝑅𝑒𝑠(𝑝). From

examining the 𝐶𝑝 versus 𝑝, it is found there are quite a few

models that have comparable 𝐶𝑝 value. Analyzing the

𝐶𝑝 values obtained by running the program, the regressors

𝑥1, 𝑥3, 𝑥5 are selected, even though the sub-model doesn’t

have the smallest 𝐶𝑝 (in general, the smallest 𝐶𝑝 is preferred.).

This decision is taken as in both the previous

𝑅p
2 𝑎𝑛𝑑 𝑀𝑆𝑅𝑒𝑠(𝑝) methods incline more towards having

[𝑥1 , 𝑥3, 𝑥5] as the regressors and also in the 𝐶𝑝 criterion check

it’s 𝐶𝑝 value is close to the smallest 𝐶𝑝 even though it’s not

the smallest.

Fig. 12 𝑹𝒑
𝟐 versus 𝒑 plot

Fig. 13 𝑀𝑆𝑅𝑒𝑠(𝑝) versus 𝒑 plot

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

46

Fig. 14 𝑪𝒑 versus 𝒑 plot

4.1.2. Stepwise Regressions
Table 1. Algorithm used and the regressors selected

Selection Algorithm Selected Regressors

Forward Selection 𝑥3, 𝑥5

Backward Elimination 𝑥5

Stepwise Regression 𝑥5

By analyzing the 𝑅2, 𝑀𝑆𝑅𝑒𝑠 and 𝐶𝑝 values obtained from

the sub-models, it is evident that the model with 𝑥1, 𝑥3, 𝑥5 as

regressors predict better compared to the other sub models.

Table 2. Regressors used in the model and their regression statistics

Regressors in

sub-model
𝑹𝒑

𝟐 𝑪𝒑 𝑴𝑺𝑹𝒆𝒔

x1, x3, x5 0.486878 -0.737994 56.5183

x3, x5 0.432215 -1.96438 57.7284

x5 0.34927 -2.79049 61.4359

(Complete set of regressors sets (28) with 𝑅2, 𝑀𝑆𝑅𝑒𝑠 and

𝐶𝑝 can be found out by running the program in the appendix)

4.1.3. Check Variance Influencing Factor (VIF)
Table 3. VIF of each regressor in the sub-model

Regressors in sub-model VIF 𝒙𝟏 VIF 𝒙𝟑 VIF 𝒙𝟓

𝑥1, 𝑥3, 𝑥5 1.9966 97.7009 96.6813

𝑥3, 𝑥5 NA 96.6812 96.6812

The VIF values for 𝑥3 and 𝑥5 seem to be very high in both

models. This indicates a possibility of multicollinearity in the

model. While comparing between the sub-models based on

their 𝑅2, 𝑀𝑆𝑅𝑒𝑠 and 𝐶𝑝, the model with 𝑥1, 𝑥3 and 𝑥5appears

to be doing better, and that of the VIF value for 𝑥1 is lower.

Therefore, regressors 𝑥1, 𝑥3 and 𝑥5 can be taken as the final

set of regressors for the final model. The regression process

continued with 𝑥1, 𝑥3 and 𝑥5 as the regressors. There are at

least 4 combinations of models (including interaction terms)

to come up with the best model.

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝐶(𝑥1) ∗ 𝑥3

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝐶(𝑥1) ∗ 𝑥5

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝑥3 ∗ 𝑥5

Table 4. Models and their predictability

Model 𝑹𝟐 𝑹𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏
𝟐

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5 46% 26.68%

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5
+ 𝐶(𝑥1) ∗ 𝑥3

46.2% 18.13%

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝐶(𝑥1)
∗ 𝑥5

88.7% 87.12%

𝑦 = 𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝑥3

∗ 𝑥5
46.3% 31.82%

Fig. 15 OLS regression result of the final model

Looking at the normal probability plot, it is evident that

the points are closer to the 45-degree line than the original

normality plots. The residual plot looks good as the points are

distributed evenly. Though two possible outliers are visible,

no action is necessary at this point because the QQ residual

plot looks good and has a very small dataset of only 16 data

points. So, it’s better to keep all the data points. Based on the

available data and the analysis 𝑦 = x1 + 𝑥3 + 𝑥5 + x1 ∗ 𝑥5 +
𝜀 , determined to be the best model. The prediction probability

𝑅2 = 88.7%. The 𝐴𝑑𝑗 𝑅2 value is close to 𝑅2 signifying the

regressors contribute well to the final model. F statistic is

greater than 1, and the p-value is less than the threshold of

0.05, which signifies there is a good amount of relationship

between the target variable and the feature variables. The

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

47

equation for the fitted line is 𝑦 ̂ = 271.92 − 120.30𝑥1 +
0.252𝑥3 − 0.5973𝑥5 + 0.5933𝑥1𝑥5 . At this point, with the

available training data, regressors (x1),density (𝑥3) and initial

boiling point (𝑥5) together can make the model prediction

well.

Fig. 16 Residual plot of the final model

4.1.4. Quantifying the Environmental implications

The reduction in fuel consumption has a direct impact on

the environment. For every unit increase in fuel density, fuel

consumption increases by 0.2474g. This means that a 1%

reduction in fuel density would result in a 0.002474g decrease

in fuel consumption, leading to a corresponding reduction in

greenhouse gas emissions. Additionally, one centigrade

increase in initial boiling point results in a 0.5973g decrease

in fuel consumption, reducing air pollution, water pollution,

land use, and biodiversity impacts. This reduction in fuel

consumption has a significant positive impact on the

environment, reducing the amount of pollutants released into

the atmosphere and preserving natural habitats.

5. Future Work
5.1. Inclusion of other Fuel Attributes

This research is limited to understanding the impact of the

above-mentioned fuel properties, such as cetane number,

density, viscosity, boiling point, flash point, aromatics, etc.,

on fuel consumption. However, various external factors, such

as fuel type, driving conditions, road conditions, etc., and fuel

contents, such as NOx, CO2, etc., play a significant role in fuel

consumption. More studies need to be carried out based on

these factors to get a better understanding of all factors

influencing fuel consumption and thereby taking action to

reduce pollution.

5.2. Use of Advanced Techniques

The utilization of advanced techniques to further analyze

the relationship between fuel density and consumption is

necessary. Non-linear analysis using parametric and non-

parametric models, such as polynomial regression,

exponential regression, and power regression, can provide a

more accurate representation of the complex relationships

between these variables. Additionally, machine learning

algorithms like gradient descent can be employed to identify

patterns and trends in the data that may not be apparent

through traditional statistical methods. By incorporating these

advanced techniques, researchers can gain a deeper

understanding of the underlying relationships between fuel

density and consumption and develop more effective models

for predicting and optimizing fuel consumption.

6. Conclusion
This study investigated the relationship between fuel

consumption and various fuel properties, including vehicle

type, cetane number, density, viscosity, initial boiling point,

final boiling point, flash point, and total aromatics. The results

of the correlation analysis revealed a strong negative

correlation between fuel consumption and initial boiling point,

indicating that initial boiling point could be useful in reducing

fuel consumption. The regression analysis revealed a

significant relationship between fuel consumption and the

predictor variables, with the best-fit model indicating that fuel

consumption is influenced by vehicle type, density, initial

boiling point, and the interaction between vehicle type and

initial boiling point. The model validation showed that the

model is a good fit for the data and can be used to make

accurate predictions about fuel consumption. Using several

regressor selection methods, vehicle type (𝑥1), density (𝑥3),

and initial boiling point (𝑥5) found the most significant and

important variables with the given dataset in explaining the

variability in fuel consumption.

 The final model, 𝑦 = 𝑥1 + 𝑥3 + 𝑥5 + 𝑥1 ∗ 𝑥5,

suggests that the vehicle type, density, initial boiling point,

and the interaction between vehicle type and initial boiling

point influence fuel consumption. This model can be used to

predict fuel consumption based on the values of the predictor

variables and develop strategies to reduce fuel consumption.

This study provides valuable insights into the relationships

between fuel consumption and fuel properties and highlights

the importance of considering the interactions between these

variables when optimizing fuel consumption. The findings of

this study can be used to inform the development of more

efficient and environmentally friendly fuels and to optimize

fuel consumption in various applications. Additionally, the

results of this study can be used as a basis for further research

on the topic, such as investigating the effects of other fuel

properties on fuel consumption or examining the impact of

fuel consumption on different types of vehicles.

Funding Statement
This study was conducted without any external funding.

The research was carried out solely for the purpose of personal

interest and curiosity, without any financial support or

sponsorship from any external organizations or individuals.

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

48

References
[1] Roger Westerholm, and Hang Li, “A Multivariate Statistical Analysis of Fuel-Related Polycyclic Aromatic Hydrocarbon Emissions from

Heavy-Duty Diesel Vehicles.” Environmental Science & Technology, vol. 28, no. 5, pp. 965-972, 1994. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Saurabh Kumar, and Avinash Sinha, “Predicting Used Car Prices with Regression Techniques,” International Journal of Computer

Trends and Technology, vol. 72, no. 6, pp. 132-141, 2024. [CrossRef] [Publisher Link]

[3] Trishit Banerjee, “Forecasting Apple Inc. Stock Prices Using S&P500– An OLS Regression Approach with Structural Break,” 2020

IEEE 1st International Conference for Convergence in Engineering (ICCE), Kolkata, India, pp. 306-310, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Yanming Yang, “Prediction and Analysis of Aero-Material Consumption based on Multivariate Linear Regression Model,” 2018 IEEE

3rd International Conference on Clouds Computing and Big Data Analysis (ICCCBDA), Chengdu, China, pp. 628-632, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Renyan Jiang, Pei Li, and Kunpeng Zhang, “Quantile-Quantile Plot of Folded-Normal Distribution and its Applications in Reliability

and Quality Modeling,” 2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR), Xiamen, China, pp. 44-

50, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining, Introduction to Linear Regression Analysis, John Wiley & Sons,

United States, pp. 1-672, 2015. [Google Scholar] [Publisher Link]

[7] Michael H. Kutner, Applied Linear Statistical Models, 5th ed., McGraw-Hill, pp.1-396, 2005. [Google Scholar] [Publisher Link]

[8] Ethm Alpaydin, Introduction to Machine Learning, 4th ed., MIT Press, pp. 1-712, 2020. [Google Scholar] [Publisher Link]

[9] Eric Matthes, Python Crash Course, A Hands-On, Project-Based Introduction to Programming, 2nd ed., No Starch Press, pp. 1-544,

2019. [Google Scholar] [Publisher Link]

[10] Lynette Cheah et al., Factor of Two: Halving the Fuel Consumption of New U.S. Automobiles by 2035, Reducing Climate Impacts in the

Transportation Sector, pp. 49-71, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[11] Jim Frost, Model Specification: Choosing the Best Regression Model, Statistics by Jim. [Online]. Available:

https://statisticsbyjim.com/regression/model-specification-variable-selection/

[12] Sara Stoudt, The Origins of Ordinary Least Squares Assumptions, Feature Column, 2022. [Online]. Available:

https://mathvoices.ams.org/featurecolumn/2022/03/01/ordinary-least-squares/

Appendix 1
Statistics of sub-models

Number of

Regressors
p

Regressors in

the model
SSRes p

R_squae

p

Adj R

square p
MSRes p Cp

1 2 ['x1'] 1249.5000 0.0547 -0.0129 89.2500 1.3790

1 2 ['x2'] 1315.3046 0.0049 -0.0662 93.9503 2.0836

1 2 ['x3'] 1286.9184 0.0264 -0.0432 91.9227 1.7796

1 2 ['x4'] 1319.2105 0.0019 -0.0694 94.2293 2.1254

1 2 ['x5'] 860.1029 0.3493 0.3028 61.4359 -2.7905

1 2 ['x6'] 865.0580 0.3455 0.2988 61.7899 -2.7374

1 2 ['x7'] 982.6454 0.2566 0.2035 70.1890 -1.4784

1 2 ['x8'] 984.2976 0.2553 0.2021 70.3070 -1.4607

2 3 ['x1', 'x2'] 1243.0546 0.0595 -0.0851 95.6196 3.3100

2 3 ['x1', 'x3'] 1214.6684 0.0810 -0.0604 93.4360 3.0060

2 3 ['x1', 'x4'] 1246.9605 0.0566 -0.0886 95.9200 3.3518

2 3 ['x1', 'x5'] 787.8529 0.4039 0.3122 60.6041 -1.5641

2 3 ['x1', 'x6'] 792.8080 0.4002 0.3079 60.9852 -1.5110

2 3 ['x1', 'x7'] 910.3954 0.3112 0.2053 70.0304 -0.2520

2 3 ['x1', 'x8'] 912.0476 0.3100 0.2038 70.1575 -0.2343

2 3 ['x2', 'x3'] 1286.8523 0.0264 -0.1234 98.9886 3.7789

2 3 ['x2', 'x4'] 1310.9797 0.0081 -0.1444 100.8446 4.0373

2 3 ['x2', 'x5'] 841.4976 0.3633 0.2654 64.7306 -0.9897

2 3 ['x2', 'x6'] 861.9746 0.3479 0.2475 66.3057 -0.7704

2 3 ['x2', 'x7'] 972.8944 0.2639 0.1507 74.8380 0.4172

2 3 ['x2', 'x8'] 939.4744 0.2892 0.1799 72.2673 0.0594

2 3 ['x3', 'x4'] 1163.8195 0.1195 -0.0160 89.5246 2.4615

https://doi.org/10.1021/es00054a032
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Multivariate+Statistical+Analysis+of+Fuel-Related+Polycyclic+Aromatic+Hydrocarbon+Emissions+from+Heavy-Duty+Diesel+Vehicles&btnG=
https://pubs.acs.org/doi/pdf/10.1021/es00054a032
https://doi.org/10.14445/22312803/IJCTT-V72I6P118
https://www.ijcttjournal.org/archives/ijctt-v72i6p118
https://doi.org/10.1109/ICCE50343.2020.9290495
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forecasting+Apple+Inc.+Stock+Prices+Using+S%26P500%E2%80%93+An+OLS+Regression+Approach+with+Structural+Break&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forecasting+Apple+Inc.+Stock+Prices+Using+S%26P500%E2%80%93+An+OLS+Regression+Approach+with+Structural+Break&btnG=
https://ieeexplore.ieee.org/abstract/document/9290495
https://doi.org/10.1109/ICCCBDA.2018.8386591
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+and+analysis+of+aero-material+consumption+based+on+multivariate+linear+regression+model&btnG=
https://ieeexplore.ieee.org/abstract/document/8386591
https://doi.org/10.1109/ISSSR61934.2024.00011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quantile-Quantile+Plot+of+Folded-Normal+Distribution+and+its+Applications+in+Reliability+and+Quality+Modeling&btnG=
https://ieeexplore.ieee.org/abstract/document/10562144
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+Linear+Regression+Analysis&btnG=
https://www.google.com/books/edition/Introduction_to_Linear_Regression_Analys/27kOCgAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&as_vis=1&q=Applied+Linear+Statistical+Models&btnG=
https://www.google.com/books/edition/Applied_Linear_Statistical_Models/OHqBQgAACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&as_vis=1&q=+Introduction+to+Machine+Learning%2C+Fourth+Edition&btnG=
https://www.google.com/books/edition/Introduction_to_Machine_Learning_fourth/uZnSDwAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&as_vis=1&q=Python+Crash+Course%2C+2nd+Edition+A+Hands-On%2C+Project-Based+Introduction+to+Programming&btnG=
https://www.google.com/books/edition/Python_Crash_Course_2nd_Edition/w1v6DwAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1007/978-1-4020-6979-6_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Cheah%2C+L%2C+Factor+of+Two%3A+Halving+the+Fuel+Consumption+of+New+U.S.+Automobiles+by+2035&btnG=
https://link.springer.com/chapter/10.1007/978-1-4020-6979-6_4

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

49

2 3 ['x3', 'x5'] 750.4695 0.4322 0.3449 57.7284 -1.9644

2 3 ['x3', 'x6'] 857.3497 0.3514 0.2516 65.9500 -0.8200

2 3 ['x3', 'x7'] 812.0833 0.3856 0.2911 62.4679 -1.3047

2 3 ['x3', 'x8'] 950.2303 0.2811 0.1705 73.0946 0.1746

2 3 ['x4', 'x5'] 818.7473 0.3806 0.2853 62.9806 -1.2333

2 3 ['x4', 'x6'] 813.3361 0.3847 0.2900 62.5643 -1.2912

2 3 ['x4', 'x7'] 883.6632 0.3314 0.2286 67.9741 -0.5382

2 3 ['x4', 'x8'] 974.1056 0.2630 0.1496 74.9312 0.4302

2 3 ['x5', 'x6'] 798.7773 0.3957 0.3027 61.4444 -1.4471

2 3 ['x5', 'x7'] 849.0222 0.3577 0.2588 65.3094 -0.9091

2 3 ['x5', 'x8'] 769.2151 0.4180 0.3285 59.1704 -1.7637

2 3 ['x6', 'x7'] 832.5670 0.3701 0.2732 64.0436 -1.0853

2 3 ['x6', 'x8'] 821.6033 0.3784 0.2828 63.2003 -1.2027

2 3 ['x7', 'x8'] 832.2658 0.3703 0.2735 64.0204 -1.0886

3 4 ['x1', 'x2', 'x3'] 1214.6023 0.0811 -0.1487 101.2169 5.0053

3 4 ['x1', 'x2', 'x4'] 1238.7297 0.0628 -0.1715 103.2275 5.2636

3 4 ['x1', 'x2', 'x5'] 769.2476 0.4180 0.2725 64.1040 0.2367

3 4 ['x1', 'x2', 'x6'] 789.7246 0.4025 0.2531 65.8104 0.4559

3 4 ['x1', 'x2', 'x7'] 900.6444 0.3186 0.1482 75.0537 1.6436

3 4 ['x1', 'x2', 'x8'] 867.2244 0.3439 0.1799 72.2687 1.2858

3 4 ['x1', 'x3', 'x4'] 1091.5695 0.1741 -0.0323 90.9641 3.6879

3 4 ['x1', 'x3', 'x5'] 678.2195 0.4869 0.3586 56.5183 -0.7380

3 4 ['x1', 'x3', 'x6'] 785.0997 0.4060 0.2575 65.4250 0.4064

3 4 ['x1', 'x3', 'x7'] 739.8333 0.4403 0.3003 61.6528 -0.0783

3 4 ['x1', 'x3', 'x8'] 877.9803 0.3357 0.1697 73.1650 1.4009

3 4 ['x1', 'x4', 'x5'] 746.4973 0.4352 0.2940 62.2081 -0.0069

3 4 ['x1', 'x4', 'x6'] 741.0861 0.4393 0.2991 61.7572 -0.0649

3 4 ['x1', 'x4', 'x7'] 811.4132 0.3861 0.2326 67.6178 0.6882

3 4 ['x1', 'x4', 'x8'] 901.8556 0.3177 0.1471 75.1546 1.6566

3 4 ['x1', 'x5', 'x6'] 726.5273 0.4503 0.3129 60.5439 -0.2207

3 4 ['x1', 'x5', 'x7'] 776.7722 0.4123 0.2654 64.7310 0.3173

3 4 ['x1', 'x5', 'x8'] 696.9651 0.4727 0.3409 58.0804 -0.5373

3 4 ['x1', 'x6', 'x7'] 760.3170 0.4248 0.2810 63.3598 0.1411

3 4 ['x1', 'x6', 'x8'] 749.3533 0.4331 0.2913 62.4461 0.0237

3 4 ['x1', 'x7', 'x8'] 760.0158 0.4250 0.2812 63.3346 0.1378

3 4 ['x2', 'x3', 'x4'] 1137.5658 0.1393 -0.0758 94.7972 4.1804

3 4 ['x2', 'x3', 'x5'] 750.1030 0.4325 0.2906 62.5086 0.0317

3 4 ['x2', 'x3', 'x6'] 856.9727 0.3516 0.1895 71.4144 1.1760

3 4 ['x2', 'x3', 'x7'] 798.2187 0.3961 0.2451 66.5182 0.5469

3 4 ['x2', 'x3', 'x8'] 922.3496 0.3022 0.1277 76.8625 1.8760

3 4 ['x2', 'x4', 'x5'] 807.6841 0.3889 0.2362 67.3070 0.6482

3 4 ['x2', 'x4', 'x6'] 812.7108 0.3851 0.2314 67.7259 0.7021

3 4 ['x2', 'x4', 'x7'] 882.1314 0.3326 0.1658 73.5110 1.4454

3 4 ['x2', 'x4', 'x8'] 934.7633 0.2928 0.1160 77.8969 2.0089

3 4 ['x2', 'x5', 'x6'] 797.1277 0.3969 0.2461 66.4273 0.5352

3 4 ['x2', 'x5', 'x7'] 826.8348 0.3744 0.2180 68.9029 0.8533

3 4 ['x2', 'x5', 'x8'] 767.5349 0.4193 0.2741 63.9612 0.2183

3 4 ['x2', 'x6', 'x7'] 832.3171 0.3703 0.2129 69.3598 0.9120

3 4 ['x2', 'x6', 'x8'] 794.8246 0.3987 0.2483 66.2354 0.5106

3 4 ['x2', 'x7', 'x8'] 818.6713 0.3806 0.2258 68.2226 0.7659

3 4 ['x3', 'x4', 'x5'] 737.7077 0.4419 0.3023 61.4756 -0.1010

3 4 ['x3', 'x4', 'x6'] 787.2208 0.4044 0.2555 65.6017 0.4291

3 4 ['x3', 'x4', 'x7'] 811.4878 0.3861 0.2326 67.6240 0.6890

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

50

3 4 ['x3', 'x4', 'x8'] 900.8902 0.3184 0.1480 75.0742 1.6462

3 4 ['x3', 'x5', 'x6'] 745.6760 0.4358 0.2948 62.1397 -0.0157

3 4 ['x3', 'x5', 'x7'] 749.3358 0.4331 0.2913 62.4447 0.0235

3 4 ['x3', 'x5', 'x8'] 745.4387 0.4360 0.2950 62.1199 -0.0182

3 4 ['x3', 'x6', 'x7'] 809.9736 0.3872 0.2340 67.4978 0.6728

3 4 ['x3', 'x6', 'x8'] 778.0683 0.4113 0.2642 64.8390 0.3311

3 4 ['x3', 'x7', 'x8'] 804.7946 0.3911 0.2389 67.0662 0.6173

3 4 ['x4', 'x5', 'x6'] 798.6237 0.3958 0.2447 66.5520 0.5512

3 4 ['x4', 'x5', 'x7'] 818.4796 0.3808 0.2260 68.2066 0.7638

3 4 ['x4', 'x5', 'x8'] 755.2663 0.4286 0.2857 62.9389 0.0870

3 4 ['x4', 'x6', 'x7'] 779.4957 0.4103 0.2628 64.9580 0.3464

3 4 ['x4', 'x6', 'x8'] 777.7035 0.4116 0.2645 64.8086 0.3272

3 4 ['x4', 'x7', 'x8'] 799.2207 0.3953 0.2442 66.6017 0.5576

3 4 ['x5', 'x6', 'x7'] 793.2047 0.3999 0.2499 66.1004 0.4932

3 4 ['x5', 'x6', 'x8'] 754.2588 0.4293 0.2867 62.8549 0.0762

3 4 ['x5', 'x7', 'x8'] 764.2920 0.4218 0.2772 63.6910 0.1836

3 4 ['x6', 'x7', 'x8'] 785.6531 0.4056 0.2570 65.4711 0.4123

4 5 ['x1', 'x2', 'x3', 'x4'] 1065.3158 0.1940 -0.0991 96.8469 5.4068

4 5 ['x1', 'x2', 'x3', 'x5'] 677.8530 0.4872 0.3007 61.6230 1.2581

4 5 ['x1', 'x2', 'x3', 'x6'] 784.7227 0.4063 0.1904 71.3384 2.4024

4 5 ['x1', 'x2', 'x3', 'x7'] 725.9687 0.4508 0.2510 65.9972 1.7733

4 5 ['x1', 'x2', 'x3', 'x8'] 850.0996 0.3568 0.1230 77.2818 3.1024

4 5 ['x1', 'x2', 'x4', 'x5'] 735.4341 0.4436 0.2413 66.8576 1.8746

4 5 ['x1', 'x2', 'x4', 'x6'] 740.4608 0.4398 0.2361 67.3146 1.9285

4 5 ['x1', 'x2', 'x4', 'x7'] 809.8814 0.3873 0.1645 73.6256 2.6718

4 5 ['x1', 'x2', 'x4', 'x8'] 862.5133 0.3474 0.1102 78.4103 3.2353

4 5 ['x1', 'x2', 'x5', 'x6'] 724.8777 0.4516 0.2522 65.8980 1.7616

4 5 ['x1', 'x2', 'x5', 'x7'] 754.5848 0.4291 0.2215 68.5986 2.0797

4 5 ['x1', 'x2', 'x5', 'x8'] 695.2849 0.4740 0.2827 63.2077 1.4447

4 5 ['x1', 'x2', 'x6', 'x7'] 760.0671 0.4250 0.2158 69.0970 2.1384

4 5 ['x1', 'x2', 'x6', 'x8'] 722.5746 0.4533 0.2545 65.6886 1.7369

4 5 ['x1', 'x2', 'x7', 'x8'] 746.4213 0.4353 0.2299 67.8565 1.9923

4 5 ['x1', 'x3', 'x4', 'x5'] 665.4577 0.4965 0.3135 60.4962 1.1254

4 5 ['x1', 'x3', 'x4', 'x6'] 714.9708 0.4591 0.2624 64.9973 1.6555

4 5 ['x1', 'x3', 'x4', 'x7'] 739.2378 0.4407 0.2373 67.2034 1.9154

4 5 ['x1', 'x3', 'x4', 'x8'] 828.6402 0.3731 0.1451 75.3309 2.8726

4 5 ['x1', 'x3', 'x5', 'x6'] 673.4260 0.4905 0.3052 61.2205 1.2107

4 5 ['x1', 'x3', 'x5', 'x7'] 677.0858 0.4877 0.3015 61.5533 1.2499

4 5 ['x1', 'x3', 'x5', 'x8'] 673.1887 0.4907 0.3055 61.1990 1.2081

4 5 ['x1', 'x3', 'x6', 'x7'] 737.7236 0.4419 0.2389 67.0658 1.8991

4 5 ['x1', 'x3', 'x6', 'x8'] 705.8183 0.4660 0.2718 64.1653 1.5575

4 5 ['x1', 'x3', 'x7', 'x8'] 732.5446 0.4458 0.2442 66.5950 1.8437

4 5 ['x1', 'x4', 'x5', 'x6'] 726.3737 0.4504 0.2506 66.0340 1.7776

4 5 ['x1', 'x4', 'x5', 'x7'] 746.2296 0.4354 0.2301 67.8391 1.9902

4 5 ['x1', 'x4', 'x5', 'x8'] 683.0163 0.4832 0.2953 62.0924 1.3134

4 5 ['x1', 'x4', 'x6', 'x7'] 707.2457 0.4649 0.2703 64.2951 1.5728

4 5 ['x1', 'x4', 'x6', 'x8'] 705.4535 0.4663 0.2722 64.1321 1.5536

4 5 ['x1', 'x4', 'x7', 'x8'] 726.9707 0.4500 0.2500 66.0882 1.7840

4 5 ['x1', 'x5', 'x6', 'x7'] 720.9547 0.4545 0.2562 65.5413 1.7196

4 5 ['x1', 'x5', 'x6', 'x8'] 682.0088 0.4840 0.2964 62.0008 1.3026

4 5 ['x1', 'x5', 'x7', 'x8'] 692.0420 0.4764 0.2860 62.9129 1.4100

4 5 ['x1', 'x6', 'x7', 'x8'] 713.4031 0.4603 0.2640 64.8548 1.6387

4 5 ['x2', 'x3', 'x4', 'x5'] 732.3446 0.4459 0.2444 66.5768 1.8415

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

51

4 5 ['x2', 'x3', 'x4', 'x6'] 768.3738 0.4187 0.2073 69.8522 2.2273

4 5 ['x2', 'x3', 'x4', 'x7'] 792.7565 0.4002 0.1821 72.0688 2.4884

4 5 ['x2', 'x3', 'x4', 'x8'] 891.2011 0.3257 0.0806 81.0183 3.5425

4 5 ['x2', 'x3', 'x5', 'x6'] 745.3324 0.4361 0.2310 67.7575 1.9806

4 5 ['x2', 'x3', 'x5', 'x7'] 748.1710 0.4340 0.2281 68.0155 2.0110

4 5 ['x2', 'x3', 'x5', 'x8'] 743.0781 0.4378 0.2334 67.5526 1.9565

4 5 ['x2', 'x3', 'x6', 'x7'] 798.1847 0.3961 0.1765 72.5622 2.5465

4 5 ['x2', 'x3', 'x6', 'x8'] 766.3723 0.4202 0.2093 69.6702 2.2059

4 5 ['x2', 'x3', 'x7', 'x8'] 785.0343 0.4061 0.1901 71.3668 2.4057

4 5 ['x2', 'x4', 'x5', 'x6'] 797.1199 0.3969 0.1776 72.4654 2.5351

4 5 ['x2', 'x4', 'x5', 'x7'] 807.5687 0.3890 0.1668 73.4153 2.6470

4 5 ['x2', 'x4', 'x5', 'x8'] 753.7036 0.4298 0.2224 68.5185 2.0702

4 5 ['x2', 'x4', 'x6', 'x7'] 767.5021 0.4193 0.2082 69.7729 2.2180

4 5 ['x2', 'x4', 'x6', 'x8'] 762.0422 0.4235 0.2138 69.2766 2.1595

4 5 ['x2', 'x4', 'x7', 'x8'] 785.7123 0.4056 0.1894 71.4284 2.4130

4 5 ['x2', 'x5', 'x6', 'x7'] 790.2118 0.4021 0.1847 71.8374 2.4612

4 5 ['x2', 'x5', 'x6', 'x8'] 749.9598 0.4326 0.2263 68.1782 2.0302

4 5 ['x2', 'x5', 'x7', 'x8'] 763.5928 0.4223 0.2122 69.4175 2.1761

4 5 ['x2', 'x6', 'x7', 'x8'] 770.2947 0.4172 0.2053 70.0268 2.2479

4 5 ['x3', 'x4', 'x5', 'x6'] 737.5067 0.4420 0.2391 67.0461 1.8968

4 5 ['x3', 'x4', 'x5', 'x7'] 737.2280 0.4422 0.2394 67.0207 1.8938

4 5 ['x3', 'x4', 'x5', 'x8'] 733.1577 0.4453 0.2436 66.6507 1.8503

4 5 ['x3', 'x4', 'x6', 'x7'] 777.7074 0.4116 0.1976 70.7007 2.3273

4 5 ['x3', 'x4', 'x6', 'x8'] 777.0274 0.4121 0.1983 70.6389 2.3200

4 5 ['x3', 'x4', 'x7', 'x8'] 799.1956 0.3954 0.1755 72.6541 2.5574

4 5 ['x3', 'x5', 'x6', 'x7'] 739.8918 0.4402 0.2367 67.2629 1.9224

4 5 ['x3', 'x5', 'x6', 'x8'] 744.3966 0.4368 0.2320 67.6724 1.9706

4 5 ['x3', 'x5', 'x7', 'x8'] 745.3464 0.4361 0.2310 67.7588 1.9808

4 5 ['x3', 'x6', 'x7', 'x8'] 774.6406 0.4139 0.2008 70.4219 2.2944

4 5 ['x4', 'x5', 'x6', 'x7'] 757.9088 0.4266 0.2181 68.9008 2.1153

4 5 ['x4', 'x5', 'x6', 'x8'] 753.4383 0.4300 0.2227 68.4944 2.0674

4 5 ['x4', 'x5', 'x7', 'x8'] 755.2610 0.4286 0.2208 68.6601 2.0869

4 5 ['x4', 'x6', 'x7', 'x8'] 769.5661 0.4178 0.2060 69.9606 2.2401

4 5 ['x5', 'x6', 'x7', 'x8'] 750.6067 0.4321 0.2256 68.2370 2.0371

5 6 ['x1', 'x2', 'x3', 'x4', 'x5'] 660.0946 0.5006 0.2509 66.0095 3.0679

5 6 ['x1', 'x2', 'x3', 'x4', 'x6'] 696.1238 0.4733 0.2100 69.6124 3.4537

5 6 ['x1', 'x2', 'x3', 'x4', 'x7'] 720.5065 0.4549 0.1823 72.0506 3.7148

5 6 ['x1', 'x2', 'x3', 'x4', 'x8'] 818.9511 0.3804 0.0706 81.8951 4.7689

5 6 ['x1', 'x2', 'x3', 'x5', 'x6'] 673.0824 0.4908 0.2361 67.3082 3.2070

5 6 ['x1', 'x2', 'x3', 'x5', 'x7'] 675.9210 0.4886 0.2329 67.5921 3.2374

5 6 ['x1', 'x2', 'x3', 'x5', 'x8'] 670.8281 0.4925 0.2387 67.0828 3.1829

5 6 ['x1', 'x2', 'x3', 'x6', 'x7'] 725.9347 0.4508 0.1762 72.5935 3.7729

5 6 ['x1', 'x2', 'x3', 'x6', 'x8'] 694.1223 0.4748 0.2123 69.4122 3.4323

5 6 ['x1', 'x2', 'x3', 'x7', 'x8'] 712.7843 0.4607 0.1911 71.2784 3.6321

5 6 ['x1', 'x2', 'x4', 'x5', 'x6'] 724.8699 0.4516 0.1774 72.4870 3.7615

5 6 ['x1', 'x2', 'x4', 'x5', 'x7'] 735.3187 0.4437 0.1655 73.5319 3.8734

5 6 ['x1', 'x2', 'x4', 'x5', 'x8'] 681.4536 0.4844 0.2266 68.1454 3.2966

5 6 ['x1', 'x2', 'x4', 'x6', 'x7'] 695.2521 0.4740 0.2110 69.5252 3.4444

5 6 ['x1', 'x2', 'x4', 'x6', 'x8'] 689.7922 0.4781 0.2172 68.9792 3.3859

5 6 ['x1', 'x2', 'x4', 'x7', 'x8'] 713.4623 0.4602 0.1903 71.3462 3.6394

5 6 ['x1', 'x2', 'x5', 'x6', 'x7'] 717.9618 0.4568 0.1852 71.7962 3.6875

5 6 ['x1', 'x2', 'x5', 'x6', 'x8'] 677.7098 0.4873 0.2309 67.7710 3.2565

5 6 ['x1', 'x2', 'x5', 'x7', 'x8'] 691.3428 0.4769 0.2154 69.1343 3.4025

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

52

5 6 ['x1', 'x2', 'x6', 'x7', 'x8'] 698.0447 0.4719 0.2078 69.8045 3.4743

5 6 ['x1', 'x3', 'x4', 'x5', 'x6'] 665.2567 0.4967 0.2450 66.5257 3.1232

5 6 ['x1', 'x3', 'x4', 'x5', 'x7'] 664.9780 0.4969 0.2453 66.4978 3.1202

5 6 ['x1', 'x3', 'x4', 'x5', 'x8'] 660.9077 0.5000 0.2500 66.0908 3.0766

5 6 ['x1', 'x3', 'x4', 'x6', 'x7'] 705.4574 0.4663 0.1994 70.5457 3.5537

5 6 ['x1', 'x3', 'x4', 'x6', 'x8'] 704.7774 0.4668 0.2002 70.4777 3.5464

5 6 ['x1', 'x3', 'x4', 'x7', 'x8'] 726.9456 0.4500 0.1750 72.6946 3.7837

5 6 ['x1', 'x3', 'x5', 'x6', 'x7'] 667.6418 0.4949 0.2423 66.7642 3.1487

5 6 ['x1', 'x3', 'x5', 'x6', 'x8'] 672.1466 0.4915 0.2372 67.2147 3.1970

5 6 ['x1', 'x3', 'x5', 'x7', 'x8'] 673.0964 0.4908 0.2361 67.3096 3.2072

5 6 ['x1', 'x3', 'x6', 'x7', 'x8'] 702.3906 0.4686 0.2029 70.2391 3.5208

5 6 ['x1', 'x4', 'x5', 'x6', 'x7'] 685.6588 0.4812 0.2219 68.5659 3.3417

5 6 ['x1', 'x4', 'x5', 'x6', 'x8'] 681.1883 0.4846 0.2269 68.1188 3.2938

5 6 ['x1', 'x4', 'x5', 'x7', 'x8'] 683.0110 0.4833 0.2249 68.3011 3.3133

5 6 ['x1', 'x4', 'x6', 'x7', 'x8'] 697.3161 0.4724 0.2086 69.7316 3.4665

5 6 ['x1', 'x5', 'x6', 'x7', 'x8'] 678.3567 0.4868 0.2302 67.8357 3.2635

5 6 ['x2', 'x3', 'x4', 'x5', 'x6'] 732.3002 0.4460 0.1689 73.2300 3.8411

5 6 ['x2', 'x3', 'x4', 'x5', 'x7'] 732.3084 0.4460 0.1689 73.2308 3.8412

5 6 ['x2', 'x3', 'x4', 'x5', 'x8'] 727.6026 0.4495 0.1743 72.7603 3.7908

5 6 ['x2', 'x3', 'x4', 'x6', 'x7'] 758.3774 0.4262 0.1393 75.8377 4.1203

5 6 ['x2', 'x3', 'x4', 'x6', 'x8'] 761.5426 0.4238 0.1358 76.1543 4.1542

5 6 ['x2', 'x3', 'x4', 'x7', 'x8'] 784.1670 0.4067 0.1101 78.4167 4.3964

5 6 ['x2', 'x3', 'x5', 'x6', 'x7'] 736.8091 0.4426 0.1638 73.6809 3.8894

5 6 ['x2', 'x3', 'x5', 'x6', 'x8'] 742.7705 0.4380 0.1571 74.2771 3.9532

5 6 ['x2', 'x3', 'x5', 'x7', 'x8'] 742.4922 0.4383 0.1574 74.2492 3.9502

5 6 ['x2', 'x3', 'x6', 'x7', 'x8'] 765.2747 0.4210 0.1315 76.5275 4.1941

5 6 ['x2', 'x4', 'x5', 'x6', 'x7'] 755.8954 0.4281 0.1422 75.5895 4.0937

5 6 ['x2', 'x4', 'x5', 'x6', 'x8'] 749.8964 0.4326 0.1490 74.9896 4.0295

5 6 ['x2', 'x4', 'x5', 'x7', 'x8'] 753.6381 0.4298 0.1447 75.3638 4.0695

5 6 ['x2', 'x4', 'x6', 'x7', 'x8'] 748.4563 0.4337 0.1506 74.8456 4.0141

5 6 ['x2', 'x5', 'x6', 'x7', 'x8'] 747.8240 0.4342 0.1513 74.7824 4.0073

5 6 ['x3', 'x4', 'x5', 'x6', 'x7'] 736.8914 0.4425 0.1637 73.6891 3.8902

5 6 ['x3', 'x4', 'x5', 'x6', 'x8'] 730.8385 0.4471 0.1706 73.0838 3.8254

5 6 ['x3', 'x4', 'x5', 'x7', 'x8'] 731.9447 0.4462 0.1693 73.1945 3.8373

5 6 ['x3', 'x4', 'x6', 'x7', 'x8'] 761.3614 0.4240 0.1360 76.1361 4.1522

5 6 ['x3', 'x5', 'x6', 'x7', 'x8'] 730.4133 0.4474 0.1711 73.0413 3.8209

5 6 ['x4', 'x5', 'x6', 'x7', 'x8'] 744.1177 0.4370 0.1555 74.4118 3.9676

6 7
['x1', 'x2', 'x3', 'x4', 'x5',

'x6']
660.0502 0.5006 0.1677 73.3389 5.0675

6 7
['x1', 'x2', 'x3', 'x4', 'x5',

'x7']
660.0584 0.5006 0.1677 73.3398 5.0675

6 7
['x1', 'x2', 'x3', 'x4', 'x5',

'x8']
655.3526 0.5042 0.1736 72.8170 5.0172

6 7
['x1', 'x2', 'x3', 'x4', 'x6',

'x7']
686.1274 0.4809 0.1348 76.2364 5.3467

6 7
['x1', 'x2', 'x3', 'x4', 'x6',

'x8']
689.2926 0.4785 0.1308 76.5881 5.3806

6 7
['x1', 'x2', 'x3', 'x4', 'x7',

'x8']
711.9170 0.4614 0.1023 79.1019 5.6228

6 7
['x1', 'x2', 'x3', 'x5', 'x6',

'x7']
664.5591 0.4972 0.1620 73.8399 5.1157

6 7
['x1', 'x2', 'x3', 'x5', 'x6',

'x8']
670.5205 0.4927 0.1545 74.5023 5.1796

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

53

6 7
['x1', 'x2', 'x3', 'x5', 'x7',

'x8']
670.2422 0.4929 0.1549 74.4714 5.1766

6 7
['x1', 'x2', 'x3', 'x6', 'x7',

'x8']
693.0247 0.4757 0.1261 77.0027 5.4205

6 7
['x1', 'x2', 'x4', 'x5', 'x6',

'x7']
683.6454 0.4828 0.1380 75.9606 5.3201

6 7
['x1', 'x2', 'x4', 'x5', 'x6',

'x8']
677.6464 0.4873 0.1455 75.2940 5.2559

6 7
['x1', 'x2', 'x4', 'x5', 'x7',

'x8']
681.3881 0.4845 0.1408 75.7098 5.2959

6 7
['x1', 'x2', 'x4', 'x6', 'x7',

'x8']
676.2063 0.4884 0.1473 75.1340 5.2405

6 7
['x1', 'x2', 'x5', 'x6', 'x7',

'x8']
675.5740 0.4889 0.1481 75.0638 5.2337

6 7
['x1', 'x3', 'x4', 'x5', 'x6',

'x7']
664.6414 0.4972 0.1619 73.8490 5.1166

6 7
['x1', 'x3', 'x4', 'x5', 'x6',

'x8']
658.5885 0.5017 0.1695 73.1765 5.0518

6 7
['x1', 'x3', 'x4', 'x5', 'x7',

'x8']
659.6947 0.5009 0.1682 73.2994 5.0637

6 7
['x1', 'x3', 'x4', 'x6', 'x7',

'x8']
689.1114 0.4786 0.1311 76.5679 5.3786

6 7
['x1', 'x3', 'x5', 'x6', 'x7',

'x8']
658.1633 0.5021 0.1701 73.1293 5.0473

6 7
['x1', 'x4', 'x5', 'x6', 'x7',

'x8']
671.8677 0.4917 0.1528 74.6520 5.1940

6 7
['x2', 'x3', 'x4', 'x5', 'x6',

'x7']
731.0911 0.4469 0.0781 81.2323 5.8281

6 7
['x2', 'x3', 'x4', 'x5', 'x6',

'x8']
726.8809 0.4501 0.0834 80.7645 5.7830

6 7
['x2', 'x3', 'x4', 'x5', 'x7',

'x8']
727.2434 0.4498 0.0830 80.8048 5.7869

6 7
['x2', 'x3', 'x4', 'x6', 'x7',

'x8']
746.3690 0.4353 0.0589 82.9299 5.9917

6 7
['x2', 'x3', 'x5', 'x6', 'x7',

'x8']
729.4028 0.4482 0.0803 81.0448 5.8100

6 7
['x2', 'x4', 'x5', 'x6', 'x7',

'x8']
737.6990 0.4419 0.0698 81.9666 5.8989

6 7
['x3', 'x4', 'x5', 'x6', 'x7',

'x8']
728.5370 0.4488 0.0813 80.9486 5.8008

7 8
['x1', 'x2', 'x3', 'x4', 'x5',

'x6', 'x7']
658.8411 0.5015 0.0654 82.3551 7.0545

7 8
['x1', 'x2', 'x3', 'x4', 'x5',

'x6', 'x8']
654.6309 0.5047 0.0714 81.8289 7.0094

7 8
['x1', 'x2', 'x3', 'x4', 'x5',

'x7', 'x8']
654.9934 0.5044 0.0708 81.8742 7.0133

7 8
['x1', 'x2', 'x3', 'x4', 'x6',

'x7', 'x8']
674.1190 0.4900 0.0437 84.2649 7.2181

7 8
['x1', 'x2', 'x3', 'x5', 'x6',

'x7', 'x8']
657.1528 0.5028 0.0678 82.1441 7.0364

7 8
['x1', 'x2', 'x4', 'x5', 'x6',

'x7', 'x8']
665.4490 0.4965 0.0560 83.1811 7.1253

7 8
['x1', 'x3', 'x4', 'x5', 'x6',

'x7', 'x8']
656.2870 0.5035 0.0690 82.0359 7.0272

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

54

7 8
['x2', 'x3', 'x4', 'x5', 'x6',

'x7', 'x8']
726.0000 0.4507 -0.0299 90.7500 7.7736

8 9
['x1', 'x2', 'x3', 'x4', 'x5',

'x6', 'x7', 'x8']
653.7500 0.5054 -0.0599 93.3929 9.0000

Appendix 2
Python Code

Start.py
import pandas as pd
from tabulate import tabulate
import matplotlib.pyplot as plt
import numpy as np
from ParametersEstimator import ParametersEstimator
import BestRegressorFinder as bestregressor
import ModelAdequacyChecker as modeladequacychecker
from statsmodels.stats.outliers_influence import variance_inflation_factor

def main():
 df = load_data()

 #visualize original data
 visualize_data(df)

 #step# 1
 print('Checking the model with all the regressors... section 6.1 of the report')
 regressors = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8']
 params_estimator = ParametersEstimator(df, regressors, 'y ~ C(x1) + x2 + x3 + x4 + x5 + x6 + x7 + x8')
 params_estimator.do_parameter_estimations()
 print('Model adequacy checking... Section 6.3 of the report')
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)

 # #step# 2 square root transformation
 print('Square root transformation... section 6.4.1 of the report')
 df1 = df.copy()
 df1['y'] = (np.sqrt(df1['y']))
 regressors = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8']
 params_estimator = ParametersEstimator(df1, regressors, 'y ~ C(x1) + x2 + x3 + x4 + x5 + x6 + x7 + x8')
 params_estimator.do_parameter_estimations()
 print('Model adequacy checking... Section 6.4.1 of the report')
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)
 #
 # step# 2 log transformation
 print('Log transformation... section 6.4.2 of the report')
 df1 = df.copy()
 df1['y'] = (np.log(df1['y']))
 regressors = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8']
 params_estimator = ParametersEstimator(df1, regressors, 'y ~ C(x1) + x2 + x3 + x4 + x5 + x6 + x7 + x8')
 params_estimator.do_parameter_estimations()
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)

 #step# 3 Quadratric a)
 print('Checking model with quadratric terms... section 6.4.3 of the report')
 params_estimator = ParametersEstimator(df, regressors, 'y ~ C(x1) + x2*x2 + x3 + x4 + x5 + x6 + x7 + x8')
 params_estimator.do_parameter_estimations()
 print('Model adequacy checking... Section 6.4.2 of the report')
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)

 # step# 3 Quadratric b)
 print('Checking model with quadratric terms... section 6.4.3 of the report')
 params_estimator = ParametersEstimator(df, regressors, 'y ~ C(x1) + x2 + x3*x3 + x4 + x5 + x6 + x7 + x8')
 params_estimator.do_parameter_estimations()
 print('Model adequacy checking... Section 6.4.3 of the report')
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)

 # step# 4 Best regressors

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

55

 print('An attempt to get best set of regressors... section 6.5 of the report')
 best_regressors = bestregressor.get_best_regressors(df, regressors)
 print(tabulate(best_regressors, headers='keys', tablefmt='psql', showindex=False))

 #
 regressors_sets_to_consider = [['x1', 'x3', 'x5'], ['x3', 'x5'], ['x5']]
 for regressors_set in regressors_sets_to_consider:
 print(tabulate(get_vif_values(df[regressors_set]), headers='keys', tablefmt='psql', showindex=False))

 ##Model validation split data into 75%-25%
 print('Analysis on different combinations of best regressor sets... section 6.5.3 of the report')
 split_at = int(len(df)*0.75)
 estimation_df = df.sample(split_at, random_state=3)
 prediction_df = pd.concat([df, estimation_df]).drop_duplicates(keep=False)

 estimation_df = pd.DataFrame(data=estimation_df.values,columns=df.columns)
 prediction_df = pd.DataFrame(data=prediction_df.values,columns=df.columns)

 regressors_sets_to_consider = [['C(x1)','x3','x5'],['C(x1)','x3','x5','C(x1)*x3'],
 ['C(x1)','x3','x5','C(x1)*x5'],['C(x1)','x3','x5','x3*x5']]
 #
 for regressors_set in regressors_sets_to_consider:
 params_estimator = ParametersEstimator(estimation_df, regressors_set)
 params_estimator.do_parameter_estimations()
 print('Model adequacy checking for model {} ... Section 6.5.3 of the report'.format(regressors_set))
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)
 PRESS, R_square_prediction = validate_model(prediction_df, params_estimator.regression_result);
 print('PRESS Statistics = {} R_square_prediction = {}'.format(np.round(PRESS, 4), R_square_prediction))

 #residual analysis of the final model with complete data
 print('Analysis on the final model ... section 6.5.3.1 of the report')
 params_estimator = ParametersEstimator(df, regressors_sets_to_consider[2], 'y ~ C(x1) + x3 + x5 + C(x1) * x5')
 params_estimator.do_parameter_estimations()
 print('Model adequacy checking for the final model {} ... Section 6.5.3.2 of the
report'.format(regressors_sets_to_consider[2]))
 modeladequacychecker.check_model_adequacy(params_estimator.regression_result)
 PRESS, R_square_prediction = validate_model(df, params_estimator.regression_result);
 print('PRESS Statistics = {} R_square_prediction = {}'.format(np.round(PRESS, 4), R_square_prediction))

def validate_model(prediction_df,regression_result):

 fitted_value_prediction_data_list = regression_result.predict(prediction_df)

 PRESS = np.sum(np.square(prediction_df['y'] - fitted_value_prediction_data_list))
 y_bar = np.mean(prediction_df['y'])
 SST = np.sum(np.square(prediction_df['y'] - y_bar))
 R_square_prediction = str(np.round((1 - (PRESS / SST)) * 100, 2)) + '%'
 return PRESS, R_square_prediction

def plot_y_x(x, y, xlabel, ylabel, title):
 plt.figure(figsize=(8, 5))
 plt.plot(x, y, 'b.',markersize=10)
 plt.xlabel(xlabel, fontsize=15)
 plt.ylabel(ylabel, fontsize=15)
 plt.title(title, fontsize=18)
 plt.grid(True)

def get_vif_values(features_df):
 vif = pd.DataFrame()
 if len(features_df.columns)>1:
 vif["VIF Factor"] = [variance_inflation_factor(features_df.values, i) for i in range(features_df.shape[1])]
 vif["features"] = features_df.columns
 return vif

def visualize_data(df):
 plot_y_x(df['x1'], df['y'],'x1','y','x1 vs y')
 plot_y_x(df['x2'], df['y'],'x2','y','x2 vs y')

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

56

 plot_y_x(df['x3'], df['y'],'x3','y','x3 vs y')
 plot_y_x(df['x4'], df['y'],'x4','y','x4 vs y')

 plot_y_x(df['x5'], df['y'], 'x5', 'y', 'x5 vs y')
 plot_y_x(df['x6'], df['y'], 'x6', 'y', 'x6 vs y')
 plot_y_x(df['x7'], df['y'], 'x7', 'y', 'x7 vs y')
 plot_y_x(df['x8'], df['y'], 'x8', 'y', 'x8 vs y')

 plt.show()

def load_data():
 # Creating pd DataFrames
 # Table B.18
 y = [343, 356, 344, 356, 352, 361, 372, 355, 375, 359, 364, 357, 368, 360, 372, 352]
 x1 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
 x2 = [52.8, 52.8, 50.0, 50.0, 47.2, 47.2, 47.0, 47.0, 48.3, 48.3, 44.7, 44.7, 55.7, 55.7, 52.8, 52.8]
 x3 = [811.7, 811.7, 821.3, 821.3, 832.0, 832.0, 831.3, 831.3, 836.8, 836.8, 808.3, 808.3, 808.7, 808.7, 813.2,
 813.2]
 x4 = [2.11, 2.11, 2.11, 2.11, 2.09, 2.09, 2.26, 2.26, 2.47, 2.47, 1.41, 1.41, 1.44, 1.44, 1.96, 1.96]
 x5 = [220, 220, 223, 223, 221, 221, 190, 190, 180, 180, 180, 180, 176, 176, 175, 175]
 x6 = [261, 261, 260, 260, 261, 261, 323, 323, 364, 364, 300, 300, 299, 299, 301, 301]
 x7 = [87, 87, 87, 87, 92, 92, 75, 75, 71, 71, 64, 64, 64, 64, 75, 75]
 x8 = [1.8, 1.8, 16.6, 16.6, 23.0, 23.0, 25.1, 25.1, 26.1, 26.1, 20.0, 20.0, 20.5, 20.5, 17.3, 17.3]

 data = {'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4,
 'x5': x5, 'x6': x6, 'x7': x7, 'x8': x8,
 'y': y}
 df = pd.DataFrame(data=data)

 print(tabulate(df, headers='keys', tablefmt='psql', showindex=False))

 return df

if __name__ == "__main__":
 main()

ParametersEstimator.py

from statsmodels.formula.api import ols
import numpy as np

class ParametersEstimator:
 'default constructor'
 def __init__(self, df, regressors, formula=''):
 self.alpha = 0.05
 self.df = df
 self.regressors = regressors
 if len(formula) == 0:
 self.formula = formula = 'y ~ ' + ('+'.join(list(regressors)))
 self.formula = formula
 self.regression_result = self.fit_selected_model(df,regressors,formula)

 def do_parameter_estimations(self):

 for counter in range(1,len(self.regression_result.pvalues)):
 #for regressor in self.regressors:
 pvalue = np.round(self.regression_result.pvalues[counter], 4)
 tvalue = np.round(self.regression_result.tvalues[counter], 4)

 if pvalue > self.alpha:
 print('tvalue = {}, pvalue = {}. {} is not significant.'.format(tvalue, pvalue,
[self.regressors[counter-1]]))
 else:
 print('tvalue = {}, pvalue = {}. {} is significant.'.format(tvalue, pvalue,
[self.regressors[counter-1]]))

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

57

 def fit_selected_model(self, df, regressors, formula=''):
 if len(formula) == 0:
 formula = 'y ~ ' + ('+'.join(list(regressors)))
 regression_result = ols(formula=formula, data=df).fit()
 print(regression_result.summary(xname=['Intercept']+regressors))
 return regression_result

ModelAdequacyChecker.py

import pandas as pd
from tabulate import tabulate
import matplotlib.pyplot as plt
import statsmodels.api as sm

def check_model_adequacy(regression_result):
 plot_residuals(regression_result)

def plot_residuals(regression_result):
 # Construct a normal probability plot of the residuals. Does there seem to be any
 # problem with the normality assumption?
 plot_normal_probability(regression_result)

 # Construct and interpret a plot of the residuals versus the predicted response.
 # Fitted vs. residuals
 plot_fitted_vs_residual(regression_result.fittedvalues, regression_result.resid, 'Fitted values',
 'Residuals', 'Fitted vs. Residuals plot')

 # Compute the studentized residuals and the R - student residuals for this model.
 regression_influence = regression_result.get_influence()
 studentized_residuals = regression_influence.resid_studentized
 r_student_residuals = regression_influence.resid_studentized_external

 # Compute all other residuals(e.g., PRESS)
 press_residuals = regression_influence.resid_studentized_external

 residuals_data = {
 'Studentized Residuals': studentized_residuals,
 'R-student Residuals': r_student_residuals,
 'Press Residuals': press_residuals
 }
 residuals_df = pd.DataFrame(data=residuals_data)
 # start the dataframe index 1 for visual purpose
 residuals_df.index += 1
 print(tabulate(residuals_df, headers='keys', tablefmt='psql', showindex=True))

 # Fitted vs. studentized residuals
 plot_fitted_vs_residual(regression_result.fittedvalues, studentized_residuals, 'Fitted values',
 'Studentized Residuals', 'Fitted vs. Studentized Residuals plot')
 # Fitted vs. r-studentized residuals
 plot_fitted_vs_residual(regression_result.fittedvalues, r_student_residuals, 'Fitted values',
 'R Student Residuals', 'Fitted vs. R Student Residuals plot')
 # Fitted vs. press residuals
 plot_fitted_vs_residual(regression_result.fittedvalues, press_residuals, 'Fitted values',
 'Press Residuals', 'Fitted vs. Press Residuals plot')

 plt.show()

def plot_normal_probability(regression):
 # Histogram of normalized residuals
 plt.figure(figsize=(8, 5))
 plt.hist(regression.resid_pearson, bins=20, edgecolor='k')
 plt.xlabel('Normalized residuals', fontsize=15)
 plt.title("Histogram of normalized residuals", fontsize=18)

 # Q - Q plot of the residuals
 plt.figure(figsize=(8, 5))
 probplot = sm.ProbPlot(regression.resid, fit='True')

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

58

 fig = probplot.qqplot(line='45')
 plt.title('Q-Q plot of normalized residuals')
 plt.grid(True)

def plot_fitted_vs_residual(x, y, xlabel, ylabel, title):
 plt.figure(figsize=(8, 5))
 plt.scatter(x=x, y=y, edgecolor='k')
 xmin = min(x)
 xmax = max(x)
 plt.hlines(y=0, xmin=xmin, xmax=xmax, color='red', linestyle='-', lw=2)
 plt.xlabel(xlabel, fontsize=15)
 plt.ylabel(ylabel, fontsize=15)
 plt.title(title, fontsize=18)
 plt.grid(True)

BestRegressorFinder.py

import itertools
from tabulate import tabulate
from statsmodels.formula.api import ols
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats

def get_best_regressors(df,regressors):

 X = df.iloc[:, :-1]
 y = df.iloc[:, -1:]

 best_subset_selection(df,regressors)

 alpha = 0.25
 regressors_to_retain1 = stepwise_forward_selection(df,regressors, alpha)

 alpha = 0.10
 regressors_to_retain2 = stepwise_backward_elemination(df,regressors, alpha)

 alpha = 0.15
 regressors_to_retain3 = stepwise_regression(df,regressors, alpha)

 return pd.DataFrame({ 'forward_selection': [','.join(regressors_to_retain1)],
 'backward_elemination': [','.join(regressors_to_retain2)],
 'stepwise_regression': [','.join(regressors_to_retain3)],
 })

def fit_selected_model(df, regressors):
 formula = 'y ~ ' + ('+'.join(list(regressors)))
 regression_result = ols(formula=formula, data=df).fit()
 equation = 'y = ' + str(np.round(regression_result.params['Intercept'], 4))
 for reg in regressors:
 coefficient = np.round(regression_result.params[reg], 4)
 if coefficient > 0:
 equation += '+' + str(coefficient) + reg
 else:
 equation += str(coefficient) + reg
 rsquare_percentage = str(np.round(regression_result.rsquared * 100, 2)) + '%'
 return equation, rsquare_percentage

def stepwise_regression(df,all_regressors, threshold):
 y = df['y']
 included = []

 while True:

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

59

 changed = False
 n = len(y)
 # forward step
 excluded = list(set(all_regressors) - set(included))
 new_tval = pd.Series(index=excluded, dtype=float)
 included_reg_tval = pd.Series(index=excluded, dtype=float)
 models_df = pd.DataFrame(columns=['regressors', 'model'])
 regressors_under_test_list, models_list = [], []

 for new_column in excluded:
 regressors_under_test = included + [new_column]
 regressors = '+'.join(regressors_under_test)
 formula = 'y ~ ' + regressors
 if ('x1*x2' in regressors_under_test) and \
 (('x1' not in regressors_under_test) or ('x2' not in regressors_under_test)):
 continue;
 model = ols(formula=formula, data=df).fit()
 new_tval[new_column] = np.abs(model.tvalues[new_column.replace('*', ':')])
 for reg in included:
 included_reg_tval[reg] = np.abs(model.tvalues[new_column.replace('*', ':')])

 regressors_under_test_list.append(','.join(regressors_under_test))
 models_list.append(model)

 models_df['regressors'] = regressors_under_test_list;
 models_df['model'] = models_list;

 best_tval = new_tval.max()
 regressors_without_intercept = model.model.exog_names[1:]
 dof = n - (len(regressors_without_intercept) + 1)
 t_in = np.abs(np.round(stats.t.ppf(threshold / 2, dof), 4))
 t_out = np.abs(np.round(stats.t.ppf(threshold / 2, dof), 4))

 if best_tval > t_in:
 best_feature = new_tval.index[new_tval.argmax()]
 for reg in included:
 regressors_under_test = ','.join(included + [best_feature])
 index = models_df.index[models_df['regressors'] == regressors_under_test]
 model_info_for_regressors_under_test = models_df.loc[index]['model'].values[0]
 if np.abs(model_info_for_regressors_under_test.tvalues[reg]) < t_out:
 included.remove(reg)
 included.append(best_feature)
 changed = True
 if not changed:
 break
 return included

def stepwise_backward_elemination(df,all_regressors, threshold_out):
 y = df['y']
 included = all_regressors
 K = len(included)

 while True:
 changed = False
 # backward step
 regressors = '+'.join(included)
 formula = 'y ~ ' + regressors

 model = ols(formula=formula, data=df).fit()
 r = K - len(included)
 # model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()
 p = K + 1 - r
 n = len(y)
 dof = n - p
 t_out = np.abs(np.round(stats.t.ppf(threshold_out / 2, dof), 4))
 # use all coefs except intercept
 tvalues = pd.Series(index=included, dtype=float)
 for reg in included:

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

60

 tvalues[reg] = (np.abs(model.tvalues.iloc[1:][reg.replace('*', ':')]))
 worst_tval = tvalues.min()
 if worst_tval < t_out:
 changed = True
 worst_feature = tvalues.index[tvalues.argmin()]
 included.remove(worst_feature)
 if not changed:
 break
 return included

def stepwise_forward_selection(df,all_regressors, threshold_in):
 y = df['y']
 included = []

 while True:
 changed = False
 n = len(y)
 # forward step
 excluded = list(set(all_regressors) - set(included))
 new_tval = pd.Series(index=excluded, dtype=float)
 for new_column in excluded:
 regressor_set = included + [new_column]
 if ('x1*x2' in regressor_set) and (('x1' not in regressor_set) or ('x2' not in regressor_set)):
 continue;
 regressors = '+'.join(regressor_set)
 formula = 'y ~ ' + regressors
 model = ols(formula=formula, data=df).fit()
 new_tval[new_column] = np.abs(model.tvalues[new_column.replace('*', ':')])
 best_tval = new_tval.max()
 regressors_without_intercept = model.model.exog_names[1:]
 dof = n - (len(regressors_without_intercept) + 1)
 t_in = np.abs(np.round(stats.t.ppf(threshold_in / 2, dof), 4))

 if best_tval > t_in:
 best_feature = new_tval.index[new_tval.argmax()]
 included.append(best_feature)
 changed = True
 if not changed:
 break
 return included

def best_subset_selection(df,complete_regressors):
 X = df.iloc[:, :-1]
 y = df.iloc[:, -1:]
 K = len(X.columns) # number of regressors
 n = len(y) # number of observations

 SSRes_list, R_squared_list, feature_list, MSRes_list = [], [], [], []
 Adj_R_squared_list, num_regressors = [], []

 for r in range(1, len(complete_regressors) + 1):
 for regressor_set in itertools.combinations(complete_regressors, r):
 regressors = '+'.join(list(regressor_set))
 formula = 'y ~ ' + regressors
 regression_model = ols(formula=formula, data=df).fit()
 p = len(regressor_set) + 1
 R_squared_list.append(regression_model.rsquared)
 r_sqr_adj = 1 - ((n - 1) / (n - p)) * (1 - regression_model.rsquared)
 Adj_R_squared_list.append(r_sqr_adj)
 SSRes_list.append(regression_model.ssr)
 feature_list.append(list(regressor_set))
 MSRes_list.append(regression_model.ssr / (n - p))
 num_regressors.append(len(regressor_set))

 p_list = np.array(num_regressors) + 1
 # lets take sigmasquare MSRes of full model, last element in the list
 hat_sigma_squared = MSRes_list[len(MSRes_list) - 1] # same as np.min(SSRes_list)/(n - K - 1)

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

61

 C_p_list = SSRes_list / hat_sigma_squared - n + 2 * p_list

 regression_summary_df = pd.DataFrame(
 {'Number_of_Regressors': num_regressors,
 'p': p_list,
 'Regressors_in_the_model': feature_list,
 'SSRes_p': SSRes_list,
 'R_squared_p': R_squared_list,
 'Adj_R_square_p': Adj_R_squared_list,
 'MSRes_p': MSRes_list,
 'C_p': C_p_list
 })

 print(tabulate(regression_summary_df, headers='keys', tablefmt='psql', showindex=False))

 # last element contains full model information
 R_K_plus_1_Square = regression_summary_df['R_squared_p'][regression_summary_df.shape[0] - 1]

 alpha = 0.05
 F = np.round(stats.f.ppf(q=1 - alpha, dfn=K, dfd=(n - K - 1)), 4)
 d_alpha_n_k = K * F / (n - K - 1)

 R_0_Square = np.round(1 - (1 - R_K_plus_1_Square) * (1 + d_alpha_n_k), 4)

 regression_summary_df.where(regression_summary_df['R_squared_p'] > R_0_Square)[
 ['Regressors_in_the_model', 'R_squared_p']].dropna()

 # p vs R square
 plot_figure(regression_summary_df['p'], regression_summary_df['R_squared_p'],
 regression_summary_df['Regressors_in_the_model'], 'p', 'R_squared_p',
 'p Vs R_squared_p - Best subset selection')
 # p vs MSRes
 plot_figure(regression_summary_df['p'], regression_summary_df['MSRes_p'],
 regression_summary_df['Regressors_in_the_model'], 'p', 'MSRes_p',
 'p Vs MSRes_p - Best subset selection')
 # p vs Cp
 plot_Cp_vs_p_figure(regression_summary_df)

 plt.show()

def plot_figure(x, y, annotation_list, xlabel, ylabel, title):
 fig = plt.figure(figsize=(10, 8))
 ax = fig.add_subplot(111)

 ax.scatter(x, y, color='b')
 for i, txt in enumerate(annotation_list):
 ax.annotate(txt, (x[i], y[i]))

 ax.set_xlabel(xlabel)
 ax.set_ylabel(ylabel)
 ax.set_title(title)

def plot_Cp_vs_p_figure(regression_summary_df):
 fig = plt.figure(figsize=(15, 12))
 f, (ax, ax2) = plt.subplots(2,1,sharex=True)

 #top part
 uppper_plot_data = regression_summary_df.where(regression_summary_df['C_p'] > max(regression_summary_df.p))\
 [['p', 'C_p']].dropna()
 ax.scatter(uppper_plot_data['p'], uppper_plot_data['C_p'], color='b')
 for i, txt in enumerate(regression_summary_df.Regressors_in_the_model):
 ax.annotate(txt, (regression_summary_df.p[i], regression_summary_df.C_p[i]))
 ax.set_xlim(0)
 ax.set_ylim([max(regression_summary_df.p),max(regression_summary_df.C_p)])
 ax.set_ylabel('Cp')
 ax.set_title('p Vs Cp - Best subset selection')

Asish Pradhan / IJCTT, 72(11), 39-62, 2024

62

 #bottom part
 lower_plot_data = regression_summary_df.where(regression_summary_df['C_p'] <= max(regression_summary_df.p)) \
 [['p', 'C_p']].dropna()
 ax2.scatter(lower_plot_data['p'], lower_plot_data['C_p'], color='b')
 for i, txt in enumerate(regression_summary_df.Regressors_in_the_model):
 ax2.annotate(txt, (regression_summary_df.p[i], regression_summary_df.C_p[i]))
 cp_p_line_data_p = [0,max(regression_summary_df.p)]
 cp_p_line_data_cp = [0, regression_summary_df.C_p[len(regression_summary_df.C_p) - 1]] #cp of full model
 ax2.plot(cp_p_line_data_p, cp_p_line_data_cp, color='r', label='Cp = p')
 ax2.set_xlim([0,max(regression_summary_df.p)+1])
 ax2.set_ylim([0,max(regression_summary_df.p)])
 ax2.set_xlabel('p')
 ax2.set_ylabel('Cp')
 ax2.legend(loc='upper left')

 # hide the spines between ax and ax2
 ax.spines['bottom'].set_visible(False)
 ax2.spines['top'].set_visible(False)
 ax.xaxis.tick_top()
 ax.tick_params(labeltop=False)
 ax2.xaxis.tick_bottom()

